Of the larger planets in the Solar-System, Jupiter and Saturn, and their moons, seem to get almost all of the attention when it comes to orbiter and lander missions. That's understandable, of course. There's a huge amount of fascinating bodies in those systems, and many mysteries to solve and theories to prove. And the fact that those systems are relatively easy to get to helps.
But a mission dedicated to Uranus and its system of moons is long overdue.
The planet Uranus: the coldest planet in the Solar-System |
Since 2010 there have been five proposed missions to Uranus. These have been by the United Kingdom (Uranus Pathfinder), ESA (MUSE and ODINUS) and NASA (Oceanus and NASA Uranus Orbiter and Probe). It’s disappointing that none of them has yet been given the go-ahead, and none of them are likely to be given it due to budget constraints and the priority given to other missions, particularly those to the Jovian system. Even if one or more of the Uranus missions was given the go-ahead, the earliest any of them would arrive at Uranus would be the mid to late 2030s (with ODINUS not even launching until 2034).
There is clearly the need for much more urgency and ambition. And there is a need to use a means of getting to Uranus that does not require a cruise time of up to 15 years (due the requirement for coventional rocket propulsion to make use of multiple gravitational slingshot maneuvers using Venus, Earth, Jupiter and Saturn). A more advanced method of propulsion is required: one that is much more powerful and sustained than current rocket technology. Nuclear thermal rockets, which have been developed and tested for decades, but never used, would allow for an orbiter mission to be launched on a direct trajectory to Uranus. The journey time would be reduced to just a few years.
But why would there be such an urgency to get an orbiter mission all the way out to Uranus so quickly? It's simply because there are many mysteries about the planet that need answers. And the sooner we know those answers the better.
One of the major mysteries about Uranus is that, unlike the other planets in the Solar-System, it seems to generate almost no heat at all. There seem to be no reasonable explanations as to why. It's quite possible that the heat energy could have been extracted from the planet by some extreme geo-thermal power generator. Indeed, the planet's unusual axial tilt, which makes the planet appear as if it's laying on its side compared to the Solar-System's other planets, and its magnetic field, which is at an extreme tilt in relation to the planet's rotation and is also off-centre by quite a margin, all point to unusual and potentially unnatural events that occurred as the planet's resources were utilised.
There is a likelihood that long ago the Uranian system was the location of some intense activity by an ancient extra-terrestrial civilisation: perhaps from Venus or Mars, or maybe even from Earth many millions of years ago (see my article 'Pre-Human Technology in the Asteroid Belt'). A vast engineering project of some kind may have been implemented. The evidence of such activity, even if it ceased hundreds of millions of years ago, will still be there for us to discover. We need to know what was going on, and why.
There is a likelihood that long ago the Uranian system was the location of some intense activity by an ancient extra-terrestrial civilisation: perhaps from Venus or Mars, or maybe even from Earth many millions of years ago (see my article 'Pre-Human Technology in the Asteroid Belt'). A vast engineering project of some kind may have been implemented. The evidence of such activity, even if it ceased hundreds of millions of years ago, will still be there for us to discover. We need to know what was going on, and why.
The most likely place we'll find that evidence is on the planet's moons.
Miranda, the smallest and innermost of the major moons of Uranus |
The moons would provide all the resources needed for a civilisation as it worked. The moon Miranda, the smallest of Uranus' major moons, certainly has the appearance of a moon that has been heavily mined. As it's composition is mainly water ice its surface could have been the main source of water, oxygen and hydrogen for fuel.
The planet's largest moons, Titania and Oberon, do not show signs of mining, but they would make ideal locations for habitats and deserve detailed surface investigations. Ulimately, a strong human presence is required for a thorough investigation (and of course for the more general reason of helping ensure the survival of our species if/when something catastrophic occurs on Earth).
The planet's largest moons, Titania and Oberon, do not show signs of mining, but they would make ideal locations for habitats and deserve detailed surface investigations. Ulimately, a strong human presence is required for a thorough investigation (and of course for the more general reason of helping ensure the survival of our species if/when something catastrophic occurs on Earth).
At the very least, a human colony in the Uranian system would be an ideal base from which to explore the outer Solar-System.
Human colonists on Miranda enjoying ultra-low gravity recreational activities |
A small human outpost on Titania, the largest moon of Uranus |
An orbiter mission to Uranus and landers for its moons are essential. Sooner rather than later we need to know what happened in the Uranian system. And ultimately we need to establish a permanent human presence there to help ensure our long-term survival.
No comments:
Post a Comment